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Characterization of satellite surface precipitation estimates and bridging Level-2 GPM core, constellation and combined Level-3 estimates.
Needed in water cycle and extreme events studies, weather and climate prediction; over land in flood prediction and water resources.

Objectives

. use the NOAA/NSSL Multi-Radar/Multi-Sensor System (MRMS) system to provide a consistent reference research framework for creating
conterminous US (CONUS)-wide comparison benchmark of precipitation retrievals across GPM core and constellation satellites.

. cross-platform characterization acts as a bridge to intercalibrate active and passive microwave measurements from the GPM core satellite to
the constellation satellites, and propagate to Level-3 precipitation products.
Space sensors
QMM-PR/TMI, GPM-DPR/GMI, SSMIS, AMSR-2, DMSP-SSM/I, MHS, ATMS j
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Relative Bias Maps and Components
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